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Abstract 

Electron density ideally is positive definite. The im- 
perfect experimental data of an X-ray diffraction 
experiment do not lead to such a function when the 
density is obtained from structure factors by the linear 
relationship of Fourier transformation. At the price of 
certain but quite small bias, electron density may be 
represented by an otherwise completely general 
exponential model. The model is based on iterative 
correction of a logarithm which yields a density 
approximation of resolution substantially higher than 
that afforded by Fourier transformation of structure 
factors. 

1. Introduction 

Positive definiteness is a characteristic property of 
electron density in any chemical system. In crystallo- 
graphic studies based on X-ray diffraction experi- 
ments, positivity has special significance. This is 
especially evident in cases for which a highly accurate 
electron density function is itself the object of study and 
also in the whole area of direct methods, which, in fact, 
historically were based upon density nonnegativity 
(Karle & Hauptman, 1950). 

Direct methods in reciprocal space often are not 
revealing of their relationship to corresponding density 
functions, but in specific cases methods have been 
developed which involve a clear conceptual dependence 
on manipulation of density. These methods generally 
follow the approach given by Sayre (1952). The related 
methods of phase refinement or correction by density 
modification as begun by Hoppe & Gassmann (1968) 
involve explicit manipulation of electron density. None 
of the density modification methods are absolutely 
dependent on electron density as a positive-definite 
function but they are conditioned throughout by the 
assumption that an ideal density is quite smooth and 
near zero in a substantial portion of a unit cell. More 
stringent are the uses of a function of p-1 for phase 
refinement (Davies & Rollett, 1976) or resolution 
enhancement (McLachlan, 1971)which certainly re- 
quire that continuous electron density be positive. 
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Filtering formalisms for phasing (Gassmann, 1977) 
and resolution enhancement (Collins, 1978; Britten & 
Collins, 1982) also may require electron density to be 
positive. In fact, the Wiener methods discussed by 
Collins & Mahar (1982) are used to determine 
positive-definite density functions which are of maximal 
sharpness in some sense. That work highlights the need 
of a general model for positive-definite electron density 
which can be accurately calculated using all available 
structure factors. In a recent paper on resolution 
enhancement (Collins, 1982) it was assumed that a 
positive-definite exponential model of electron density is 
general and can yield a good representation of the 
density. In the present paper we show these 
assumptions to be correct. 

2. The exponential model 

A set of structure factors/¢ is assumed to exist and be 
reasonably complete in a range of sin 8/2 which 
corresponds to atomic resolution in the density func- 
tion. Provided the error in a structure factor is small, 
say the mean error modulus is <10% of the mean 
structure-factor modulus, an excellent approximation of 
the electron density is a routine result of Fourier 
transformation. Although experimental error and 
series-termination effects preclude absolute correctness 
of the'computed density, even use of/~, the normalized 
structure factor (Karle & Karle, 1966), in spite of 
severe series-termination effects would result in a 
qualitatively useful density function. In the following 
discussion normalized structure factors are used unless 
otherwise specified, and their transform is assumed to 
show the rippling and negative regions normally 
associated with severe series-termination error. 

The usual density function, constrained only to be 
real, provides a noncontroversial starting point for 
constructing an exponential model of density. The 
model-required positivity can be imposed in a number 
of ways. If by some conservative operation positive z is 
obtained from ~ the transform of/~, then the exponen- 
tial model gives as an approximation for ~ at the 
position specified by x 

~x= exp{ln zx}. (2.1) 
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In this context a conservative operation is one which 
changes positive density not more than slightly and at 
least approximately preserves the general shape of the 
starting density function. 

In order to improve the estimate of ~ but ensure its 
positivity, a correction is sought for In r as 

6 In zx = &Jrx ,  (2.2) 

so that an improved estimate of ~ is given by 

~x = exp{ln rx + &Jz-x}. (2.3) 

Any ~ obtained by (2.3) may be transformed to give E, 
then (/~ - E) may be used as the Fourier coefficient of 
&. Repeated use of (2.3) in this fashion with the 
appropriate updating of In r constitutes a formal 
solution by approximation for the problem of obtaining 
an exponential model for electron density. 

Equation (2.3) suffers an ill-conditioning due to the 
z--~ dependence of the correction term. Because the 
calculation of ~ is a successive approximation pro- 
cedure, it is permissible to replace z--1 by w(r) for which 
it is required that 

w(z - )~w(v+~) ,  0 ~ r ~ r + ~ <  1.0 (2.4a) 

- 1  Z "-1 _> W(z-) _> Z'ma x. (2.4b) 

Such a weight function cannot change the sense of any 
correction and its effect on final ~ may be made as small 
as desired by increasing the number of iterations. One 
type of weight function is given by the family 

w(z-) = rma~x[a(-1 + r/rmax) 2 + 1]; 0 < a < 4. (2.5) 

The reasonableness of this weight function provides no 
ensurance that while overcoming the ill-conditioning 
of (2.3) the modified form has retained suitable con- 
vergence properties. This problem awaits empirical tests 
such as the illustration of this paper and the successful 
demonstration involving a protein crystal structure 
(Collins, 1982). 

In its form of application (2.3) is 

dj,= exp[ln rx + w(rx) V -1 Z mk(/~k-- Ek) 
L k ~ K  

"1 

× exp{--2n/k, x}],  (2.6) 

where w(r) is given in (2.5), V is the volume of a unit 
cell, K denotes the set of reciprocal-lattice points for 
which there are observations, and m = (2 - 6i) is a 
reflection weighting in which 6[ is 1 or 0 depending on 
whether the reflection is centric or acentric. It is not 
necessary to restrict ~ to be a real-valued function, but 
for the present crystallographic application the restric- 
tion is assumed and the set of structure factors must 
conform to Friedel's law. An equation very similar to 
(2.6) has been given elsewhere (Collins, 1982) as the 
basis for an iterative procedure to minimize the 
disagreement between I~1 and IEI by steps of maxi- 
mum configurational entropy for the density function. 

3. An example 

fl-Lyxose has been studied in a single-crystal X-ray 
diffraction experiment and its quantitative structure 
determination reported by Hordvik (1966). The struc- 
ture has symmetry P2~2121; unit-cell dimensions a = 
9.58, b = 10.35, c = 6-52 A; and four formula units of 
CsH~005 per unit cell. The reported atomic coordinates 
were used to compute ideal error-free normalized 
structure factors ~.  The scattering factors used were 
gc = 0.27, go = 0.36, and hydrogen atoms were 
excluded from the calculation. These calculated (nor- 
malized) structure factors were used without further 
modification throughout the example. 

The example was designed to be a test and 
demonstration of the exponential density model as 
providing an acceptable representation of density for 
which there is a data set severely truncated in reciprocal 
space. It is assumed that the transform of the truncated 
data has been calculated so that it may serve as a 
starting point for iterative application of (2.6). If the 
demonstration is to be successful, the procedure must 
lead to an improvement over the original representation 
of density. 

The iterative procedure beginning with computation 
of r from L ¢ truncated at sin 0/2 = 0.60 A -1 is: 

(i) to ensure positivity of density, replace z- by the 
larger of z-,rmax/100, then compute and file the 
logarithm of r and as initial E, the transform of r; 

(ii) compute (2.6) with w(r) given by (2.5) in which 
a = 1.0, K restricted such that Ikl/2 < 0.6, and with 
the phase of E assigned to/~. For a subsequent iteration 
the logarithm of ~ is the new In z- and the transform of 
is the new E;  

(iii) temporarily scale E to /~ to compute the 
disagreement factor R as the primary comparison 
between the observed and modeled data; 

(iv) repeat steps (ii) and (iii) until the improvement in 
R is suitably small. 

The weight function of step (ii) was chosen to be far 
from that of the ill-conditioned equation (2.3) in view of 
the severe truncation conditions of the example. There 
are 702 unique structure factors in the range 0 -  
0.60 A -1 in sin 0/2. All Fourier transformations were 
carried out on grids of 64 × 64 x 32 to be sure of 
adequate grid fineness in direct space and suitable 
transform separation in reciprocal space. 

4. Analysis of results 

The course of the calculations through six iterations is 
summarized in Table 1. The value for R = Y ]I~L -- 
IEII/~. I~J is useful for following the progress of the 
calculations but is of uncertain absolute significance. 
The general featurelessness of the other sequences of 
Table 1 suggest that only R as its rate of change is 
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Table 1. The course of  the calculations 

Iteration 

R 1 2 3 4 5 6 

R 0.29 0.25 0-23 0-22 0.21 0-20 
Scale factor* 1.09 1-23 1.25 1.25 1.25 1.24 
Density extremes (A -3) 1.30, 0.013 2.2, 0.008 2.1, 0.006 2.3, 0.005 2.4, 0.004 2.5, 0.003 
Mean change in phaset 2.0 (3.5) 0.6 (1.1) 0.2 (0.5) 0.1 (0.5) 0.1 (0.4) 0.1 (0.5) 
After six iterations ( I cttrue - aMEM I )'t':l: = 2" 1 (3"4) 

* Scale factor is x -l, x = ~ I~011EI/~ tel IEI. 
"t" Modulus-weighted averages are given; the corresponding unweighted averages follow in parentheses. All values are in degrees. 

{/'true are the computed ideal phases and O.ME M are the phases from Fourier inversion of the exponential density model. 

useful in discerning effective convergence to a good 
exponential model of density. It is possible that a 
different measure of the difference (L~I - L EI) would be 
decisively more useful, but it appears that the other 
types of tabulated data are useful only to determine that 
the calculations are progressing in an orderly manner. 

Should R = 0.0 no change could occur upon 
iteration. This will not occur for experimental data 
because of the bias, however small, associated with the 
nonlinear relationship between /~ and the exponential 
density model. [We follow Wilson (1979) who used 
'bias' to denote 'systematic error, arising from inade- 
quacy of mathematical techniques, whereby random 
errors, of mean value zero in the raw data, become a 
systematic bias in derived quantities - in the present 
case in the distribution of electron or other density'.] 
We assume therefore that a stationary though nonzero 
value for R is evidence of convergence in an average 
sense, and that a significantly diminished rate of change 
in R signals a useful asymptotic approximation to the 
limiting density model. 

Density maps are given in Fig. 1 as projections of the 
three-dimensional density functions along [001]. The 
contour levels used are the same for both maps and are 
integral multiples of an arbitrarily chosen interval; 
negative contours appear as broken lines. Fig. 1 (a), the 
standard map, is a projection of the density obtained by 
Fourier transformation of (ideal) L 0 drawn from the 
range 0-0.60 A -1 in sin 0/2. Fig. l(b), the exponential 
map, is a projection of the density iteratively developed 
from the same data after the six iterations summarized 
in Table 1. Identical contouring schemes were used for 
the two maps, but Fig. l(b) has no negative or zero 
contour because the density function is positive definite. 

The exponential map is about 75% higher than the 
standard map. Although a small positive bias in the 
exponential function may have artificially increased the 
level of the exponential map ~0.5% ~max, its peak 
widths at half height are somewhat smaller than those 
of the standard map. This gives qualitative con- 
firmation of the greater height of the exponential map 
as significant and corresponds to its obviously greater 
resolution. 

The shortest interatomic separation resolved in the 
projection of the exponential density is the fore- 
shortened 0 . 6 A  for C(3)-O(4) and we take the 
corresponding effective resolution limit to be 0.6 A or 
better. In the standard map the longest unresolved 
separation is 0.8 A for C(2)-C(5) but because C(2) 
and C(5) are very nearly resolved we take the effective 
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Fig. 1. Projections of  density (A -a) along [OO1] with contours  at 
integral multiples of  the same arbitrary interval; (a) is the 
projection of  the standard t ransform of  L O, (b) is the projection o f  
the exponential model of density. Negative contours are broken 
lines. 
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resolution to be 0.8 A. If the maxim of equivalence 
between effective resolution and minimum interplanar 
spacing of the diffraction record is assumed, then the 
maps would correspond to diffraction records limited 
by s in0 /2  ,-, 0.8 A - '  for the exponential map and 
~0 .6  A - '  for the standard map. Correction of these 
values for different resolution properties in two and 
three dimensions (Wilson, 1979) suggests the smaller 
values of 0-7 and 0.5 A -1 for the three-dimensional 
exponential and standard maps respectively. Although 
these values are of only qualitative significance, their 
ratios of  >1.3 are determined by the resolutions 
observed in the two maps. The ratio > 1.3 means that 
standard three-dimensional Fourier synthesis of struc- 
ture factors would require substantially more than 
twice as many data to achieve the same resolution 
obtainable by computation of an exponential model of 
electron density as outlined. 

In reciprocal space it is desirable to know what 
agreement there is between/~ and E for k outside K 
which gives the range of observations. Of  course it is 
not possible to know/~ beyond the range of observation 
except in a simulation such as the present example. 
Here the comparison between /~ and E is carried 
through the range 0 - 1 . 2 0  ,/k-' in sin 0/2, a range twice 
that of the data upon which the two density functions 
were based. 

All ~ and E were sorted into 12 equal ranges of 
sin 0/;t, for each of which the scale of E relative to 
was determined. R calculated for the scaled structure 
factors within each shell and each scale are given in 
Table 2. The averaged R = 0.056 for 0 -0 .60  A - '  in 
sin 0/;I, reflects the agreement between features of the 
transform of E and the perfect transform of L O after 
convolution of a simple shape with its spikes. The 
individual values of R show there is substantial 
agreement between L O and E for 0 -0 .90  A - '  in sin 0/2. 
This represents an increase of resolution in the 
exponential model of density by 50% over that of the 
standard Fourier transform of structure factors, both 
models based on the same data. 

Table 2. Some averages dependent on sin 0/2 

Number of 
sin 0/2" (A-') Qt R contributors 

0.05 1.89 0.051 4 
0.15 1.67 0.089 28 
0.25 1.34 0.060 67 
0.35 1.13 0.058 127 
0.45 1.01 0.045 196 
0.55 0.92 0.058 280 
0.65 0.38 0.153 388 
0.75 0.28 0.161 516 
0.85 0.19 0.230 632 
0.95 0.11 0.390 805 
1.05 0.04 0.693 965 
I. 15 0.02 0.739 1151 

* The extremes of each range are 0.05 A-' from the tabulated midpoint. 
t Q = "  I~11EI/VlLOI ILOI. 

The window in reciprocal space through which data 
have been observed in the present simulation is the 
unit-step function. The function is unity for sin 0/;I, < 
0.6 A - '  and zero elsewhere. Wilson (1979) points out 
that the best bias-free estimate of density is the 
truncated Fourier series, based on the best bias-free 
structure factors, which may in turn be interpreted as 
the convolution of the best true density with the 
transform of the unit-step window. As stated earlier, the 
exponential density model certainly introduces bias in 
the density along with the partial deconvolution of 
structure and window transform implied by the 
increased resolution. 

It is evident that resolution has been increased in the 
exponential model, but the peak widths of Fig. l(b) 
make it equally clear that termination-of-series effects 
are only partially overcome. To the extent that they are 
overcome, the result can be represented as a change in 
the window in reciprocal space. The individual scales of 
Table 2 provide the window shape shown in Fig. 2; in 
the figure the scale values for structure factors outside 
the range of observation have been multiplied by 2.05 
to make the curve as smooth as possible. For 
comparison Fig. 2 includes the minimum-bias window 
of Papoulis (1973) which was fitted by variation of its 
overall scale and first-zero position to the window for 
the exponential density model. Papoulis's minimum- 
bias window is for one dimension so its comparison 
with a multidimensional result, notwithstanding the ease 
of first-zero location, must be undertaken with reserve. 
The Papoulis window is 

M~ = t [n - '  sin ns' + (1 - s ' )  cos ns'l, s' < 1.0, 

(4.1a) 

where t is the scale of M, s' = S/Sma x, s = sin 0/2, and 

M k=O, S>Sma x. (4.1b) 
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Fig. 2. Data windows: M is the Papoulis minimum-bias window, Q 
is the implied window for the exponential density of the 
simulation. 
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The window was required to have a positive transform 
and (for fixed t) to minimize the bias defined as 
proportional to 

oo 

f X 2m x dx ,  (4.2) 
--oO 

m being the nonnegative transform of M. The window 
parameters used in Fig. 2 are t = 1.693 and Sma x = 
1.466,~-1. The curve similarities invite a comparison 
which suggests the effective upper limit of resolution in 
the exponential density may be substantially greater 
than the 0.90 ,~-~ in sin 0/2 indicated by inspection of 
the R values given in Table 2. 

It appears that the exponential density of this 
simulation is at a resolution higher than that of the 
original data by a factor in the range ~ 1.5-2.0. 

5. Conclusion 

In presentation of an information-theoretic density 
reconstruction procedure, an exponential model was 
elsewhere (Collins, 1982) presumed to provide a 
competent representation of electron density. In this 
paper the same basic procedure of iterative entropy 
maximization has been developed from the point of 
view that a good exponential model of density can be 
obtained by iterative correction of its logarithm. 

Wilson's (1979) observation that 'the best object- 
ively determinable estimate of the true density is the 
truncated Fourier series... ' remains unchallenged, and 
primarily because of the unavoidable bias associated 
with the nonlinear relationship between density and 
structure factor in an exponential model. Nevertheless, 
we have shown that an exponential model of density 
can be of substantially higher resolution than the 
truncated Fourier series based on the same structure 
factors. Moreover, the procedure for deriving the 
positive-definite density model, which is an entropy 
maximization procedure (Collins, 1982), yields a 
density representation which qualitatively displays the 
property of minimum bias at the substantially higher 
resolution. 

There is no discernible cause for placing an upper 
bound on the resolution enhancement demonstrated 
here for the simulation based on fl-lyxose. As a 
practical matter resolution enhancement will be limited 
by the computational effort invested and this in turn is 
most likely to be affected by the rapidly diminishing 
returns of the iterative process. Although the pro- 
cedure has been demonstrated with experimental data 
for a protein crystal structure (Collins, 1982), the 
manner in which error in the structure factors may 
impede the determination of an exponential density 
model is unknown and will be the subject of a future 
study. One definite limit on resolution enhancement is 
imposed by the fineness of the grid on which the density 
is represented. The window shape of Fig. 2 suggests 

that significant resolution enhancement cannot be 
expected unless the grid fineness is at least twice that 
which is minimally necessary for representation of the 
ordinary Fourier transformation of structure factors. 

While the power of the procedures given here and 
elsewhere (Collins, 1982) depends in good measure on 
the generality of the exponential model, its very 
generality almost guarantees that more useful specific 
models can be developed during the solution of most 
crystallographic problems. For example, if at any stage 
of a structure determination atoms can be identified 
and accurately modeled in reciprocal space by avail- 
able scattering factors, then the implied resolution 
which attends normal structure-factor least squares 
greatly exceeds that which is characteristic of routinely 
analyzed density functions. For the same reasons of 
generality in the exponential model, nonphysical 
features in a model density will persist if they are not in 
disagreement with the experimental moduli. From the 
perspective of information theory this is required by the 
procedure of entropy maximization because the entropy 
maximized is that which measures the change between 
density iterates. Thus the procedure ensures nothing 
concerning the final density function except that it is 
positive definite, it agrees with the data, and it was 
constructed in steps which are shortest in an infor- 
mation space. 

Resolution enhancement, which has been demon- 
strated in the simulation, makes it clear that an 
exponential model of density can be good and in some 
respects better than the objective estimate available as a 
Fourier series. The model is also quite general although 
some impairment of generality may arise from the bias 
introduced by requiring the density to be positive 
definite. 

This work has been supported in part by the Robert 
A. Welch Foundation through grant A-742 and by the 
Research Corporation through a Cottrell research 
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